Author Correspondence author
International Journal of Marine Science, 2013, Vol. 3, No. 32 doi: 10.5376/ijms.2013.03.0032
Received: 05 May, 2013 Accepted: 03 Jun., 2013 Published: 02 Jul., 2013
Khoshravan and Banihashemi, 2013, Caspian Rapid Sea Level Changing Impact on Estuaries Morphodynamic Deformation, International Journal of Marine Science, Vol.3, No.32 253-257 (doi: 10.5376/ijms.2013.03.0032)
In this paper, the evaluation of sedimentary-morphodynamic deformation of main estuaries of rivers in the southern coasts of the Caspian Sea is main target. With selecting, eight main rivers and by sampling of sediments on them in the beach zones, geometry of surrounded beach structure, morphodynamic condition and sedimentary deposition processes were analyzed. with interpretation satellite and aerial images of study area along the period between 1983 till 2004 that correspond to last progression phase of Caspian sea level arise (+ 2.5m), the effect of rapid sea level changing of the Caspian Sea on beach and mouth of rivers have been measured. The results show that there are different type of the estuaries in the study area and the last sea level arise has caused morphdynamic deformation (trait inclination of rivers, inflation of mouth and it’s widen) on the beach zone and the rivers mouth condition. Therefore as conclusion, the rivers of the Caspian Sea southern coasts have different behavior against rapid sea level changing in the coastal zones and they are classified to three statements: erosion, accretion and transition.
Morphodynamic structures figures in the estuary area were associated to sedimentary depositional processes and hydrodynamic of sea and hydraulic of river (Lichter and Viely, 2010). The protection and remediation of rivers in the coastal zone against to erosion and destructing events and preventing of environmental disturbances development on there have required enough understanding on natural condition of marine forces (waves, currents, storms) and river discharge amount (Wright and Thom, 1980). So in this research recognition and classification of sedimentary-morphodynamic condition of rivers mouth and its deformation situation against rapid sea level changing is the main problem. Previous studies results show that hydrodynamic and hydraulic effects have special trait in study area (Alahmad, 1996). As the annually regime of prevailing winds is very different. So physical condition of wind-induce wave in the coastal area is complex and different (Alahmad, 1996). This agent caused the energy of the breaking waves would be dissimilar in the different part of the southern coasts of the Caspian Sea (Alahmad, 1996). Therefore wave dominated area has been spread along the West part of Mazandaran province beach and East of Gilan province shore. At the other hand the South-Eastern coasts of the Caspian Sea (Bandar e Torkaman) and the coasts in the West part of Gilan have low energy statements (Alahmad, 1996). Other coasts along the West part of Mazandaran central zone have transition condition of energy level (Alahmad, 1996). Also the statement of hydraulic forces of rivers is similar to hydrodynamic of sea. The rivers of study area were classified to permanent and temporary conditions considering the amount of water and sediment discharge to the Caspian Sea (Khoshravan, 2001). From morphological point of view the southern coasts of the Caspian Sea has been classified to five zones (Khoshravan, 2000). Each of them has special condition related to beach structure geometry and morphodynamic and sedimentary condition (Khoshravan, 2000). as result of the beach response to environmental forces. Therefore the shape of estuary and river mouth completely was associated to surrounded morphological zone. As previous research showed that the Southern coasts of the Caspian Sea has been classified to three hydrodynamic condition (dissipative, reflective and transition) (Khoshravan, 2007). Also past study on Sefidrood River delta shows that rapid sea level changing have direct influence on its evolution along the Quaternary period (Alizadeh, 2007; Jedari, 2005). It was determined that many rivers of study area were connected to the Caspian Sea through marginal lagoon and some of them enter to the sea directly (Alizadeh, 2007). So there are different conditions of estuaries shapes, sedimentary depositions and morphodynamic structures in the study area. So in this paper with emphasis to geometry of beach structure, sediment size distribution and morphodynamic formation we want to compare main rivers of the study area together and then their behavior would be controlled against rapid sea level changing through satellite image interpretation.
Caspian Sea as the largest surrounded basin in the world is located between Eurasia Bridge and there are five marginal countries along its coastal area. Its watershed basin area is about 400.000 km square and the maximum length of it is 1200 km and with average wide approximately about 365 km. there are many important rivers around the Caspian Sea, that among them Volga is the vital river and it cover 75 percent of water entranced of the Caspian Sea (Khoshravan, 2001). After that, Omba, Solak, Samour, Atrak and Oral are important rivers in the Caspian region. The southern coast of the Caspian Sea as study area was elongated along the North-Alborz Mountain and it has 865 km length. There are more than 100 rivers in this region that they discharge water and sediment to the Caspian Sea (Figure 1).
Figure 1 Study area location map and main rivers of the Caspian sea south coasts
1.2 Methodology
the main rivers of study area have been studied from the amount of discharge of water and sediments to Caspian Sea and then eight rivers were selected in the southern coasts of the Caspian Sea: (Gorganrood, Neka, Larim, Sorkhrood, Nashtarood, Sefidrood, shafarood and Lisar) (Figure 1). They are covering all part of study area from East to West ward. The selection indexes of river depend on hydrological condition of rivers and hydrodynamical and morphological of the beach zones. In the second stage, with field survey monitoring and sediments sampling, all sedimentary–morphodynamic formation of beach zone and estuary of rivers were measured. Samples were collected from River mouth, around the beach and at the back of rivers. Then after laboratory test sediments grain size parameters were calculated with analytical software. So the sedimentary characteristic of rivers mouth were determined and classified by obtained results. Subsequently the estuary shape of main rivers of the Caspian Sea and river mouth deformation have been comparing with use satellite images associated to last Caspian sea level rise during 1983 till 2004. The images of 1983 year belong to the aerial photos with scale 1:10000 and the satellite images are from Landsat (TM), 2004 year were georeferenced with topography map with 1:25000 scale and with use GIS software (Arc- GIS 9-2), all vector data of rivers and estuary were prepared and finally with comparison of them, the estuary deformation along the above mentioned time was reconstructed.
Comparing results of sediments grain size analysis and sedimentary parameter evaluation (d50, Mean, Skewness, Kurtosis, standard deviation) of all selected river of coastal stations show that sediments textural properties have varied between the mouth of rivers and the adjacent coasts area (Table 1).
Table 1 The sediment grain size mean of sampled points |
2.2 Estuary shape classification
Figure 2 the Variety of Rivers mouth shape in the study area |
2.4 Rapid sea level fluctuation and estuary deformation
Figure 3 The rapid sea level changing impact on rivers mouth deformation in the study area |
http://dx.doi.org/10.1016/j.margeo.2010.12.005
http://dx.doi.org/10.1016/j.quaint.2007.02.014
http://dx.doi.org/10.1016/j.geomorph.2010.05.007
Wright L.D., and Thom B.G., 1980,. Wave influences on river mouth depositional process, Estuarine and Coastal Marine Science, 11: 263-277
http://dx.doi.org/10.1016/S0302-3524(80)80083-1
. PDF(151KB)
. FPDF(win)
. HTML
. Online fPDF
Associated material
. Readers' comments
Other articles by authors
. Homayoun Khoshravan
. Masoumeh Banihashemi
Related articles
. Caspian
. River
. Sediment
. Morphodynamic
. Fluctuation
. Estuary
Tools
. Email to a friend
. Post a comment